Signature Embedding: Writer Independent Offline Signature Verification with Deep Metric Learning
نویسندگان
چکیده
The handwritten signature is widely employed and accepted as a proof of a person’s identity. In our everyday life, it is often verified manually, yet only casually. As a result, the need for automatic signature verification arises. In this paper, we propose a new approach to the writer independent verification of offline signatures. Our approach, named Signature Embedding, is based on deep metric learning. Comparing triplets of two genuine and one forged signature, our system learns to embed signatures into a high-dimensional space, in which the Euclidean distance functions as a metric of their similarity. Our system ranks best in nearly all evaluation metrics from the ICDAR SigWiComp 2013 challenge. The evaluation shows a high generality of our system: being trained exclusively on Latin script signatures, it outperforms the other systems even for signatures in Japanese script.
منابع مشابه
Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملLearning features for offline handwritten signature verification using deep convolutional neural networks
Verifying the identity of a person using handwritten signatures is challenging in the presence of skilled forgeries, where a forger has access to a person’s signature and deliberately attempt to imitate it. In offline (static) signature verification, the dynamic information of the signature writing process is lost, and it is difficult to design good feature extractors that can distinguish genui...
متن کاملSigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification
Offline signature verification is one of the most challenging tasks in biometrics and document forensics. Unlike other verification problems, it needs to model minute but critical details between genuine and forged signatures, because a skilled falsification might only differ from a real signature by some specific kinds of deformation. This verification task is even harder in writer independent...
متن کاملReducing False Acceptance Rate in Offline Writer Independent Signature Verification System through Ensemble of Classifiers
Handwritten signature verification is a very challenging and critical task. This work aims at proposing an efficient offline handwritten signature verification model using writer independent approach. The prime focus of this work is on reducing the false acceptance rate of genuine signatures of writers while letting false rejection rate at a satisfactory level through ensemble of classifiers. T...
متن کاملHybrid writer-independent-writer-dependent offline signature verification system
Standard signature verification (SV) systems are writer-dependent (WD), where a specific classifier is designed for each individual. It is inconvenient to ask a user to provide enough number of signature samples to design his WD classifier. In practice, very few samples are collected and inaccurate classifiers maybe produced. To overcome this, writer-independent (WI) systems are introduced. A g...
متن کامل